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ABSTRACT
REDEFINE is a distributed dynamic data�ow architecture, designed
for exploiting parallelism at various granularities as an embedded
system-on-chip (SoC). �is paper dwells on the �exibility of REDE-
FINE architecture and its execution model in accelerating real-time
applications coupled with a WCET analyzer that computes execu-
tion time bounds of real time applications.
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1 INTRODUCTION
Worst Case Execution Time (WCET ) and Best Case Execution Time
(BCET ) of a real time application are de�ned in [3]. �e termi-
nology de�ned in [3] lists few other desirable properties namely,
Safeness that accounts for conservative approximations of uncer-
tainties in the application, and Tightness that aims to obtain tighter
and precise estimations for the WCET. We present the architecture
of REDEFINE with emphasis on its major design objectives namely,
performance due to parallelism and predictability. We present a
static timing analysis method for good estimates of best and worst
case time that meets the Safeness and Tightness constraints. RE-
DEFINE Execution Model and Architecture: REDEFINE [1] is
a distributed macro data�ow execution engine for accelerating exe-
cution of application kernels (hotspots to be accelerated) speci�ed
as some partial order between HyperOps [1]. Each HyperOp is a
convex scheduleable data-race free partition of the kernel’s data
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�ow graph. Kernels are speci�ed as a HyperOp Interaction Graph
(HIG) with vertices corresponding to HyperOps representing com-
putation and edges corresponding to communication. HyperOps
are scheduled for execution in strict data �ow order. Resources
used by a currently executing HyperOp can be used by another
HyperOp only on completion of execution of the current HyperOp,
eliminating the possibility of context switching within a kernel or
across kernels. An abstraction of the hardware model of REDEFINE
presenting its major components is shown in �gure 1. Context
memory holds context frames that have placeholders for input data
corresponding to the HyperOp they are associated with. Global
memory houses the code and operands of the kernel. �e three key
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Figure 1: REDEFINE Abstract machine

components of REDEFINE, viz. orchestrator, context memory, and
global memory are distributed across the compute resources (CRs)
over a single address space on a packet switched toroidal mesh
NoC with deterministic XY routing. Each CR houses one or more
compute elements (CEs), each of which execute a partition of a Hy-
perOp, referred to as a pHyperOp, created to maximize exploitation
of ILP within the HyperOp. Within a CR, CEs communicate among
each other via scratchpad memories associated with them, using
non-blocking write and blocking read instructions. compiler iden-
ti�es partitions of HyperOps and inter-pHyperOp communication.
A CR also contains a part of the global address space, called the
Distributed Shared Memory (DSM). Private L1 data and instruction
caches are h each CE and coherence at HIG level is maintained
by employing a relaxed dag consistency model. Static analysis is
inherently challenging for distributed computing platforms. �e
design choices of execution model and architecture of REDEFINE
ease WCET analysis as follows.
Artifacts of execution model: A fully enumerated HIG for a real
time application kernel and its operand data maybe distributed
onto a subset of compute and memory resources of REDEFINE
statically for optimal performance along with provable execution
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time bounds. Such HIGs help reason about scheduling order of
computations in a distributed setup and also in identifying HIG
synchronization points.
Artifacts of architecture: Hardware artifacts of REDEFINE namely
memory, network, instruction/data/context frame caches introduce
dynamic behavior. Explicit memory management eases estimating
memory latencies in a distributed address space.

2 WCET ANALYSIS
Compiler backend o�ers the �exibility to add instruction latencies
as a part of the processor model description. We use the method
presented in [2] to create a pipeline model. Modeling cache uses the
established may and must cache analysis methods. Memory Alias
Analysis generated by the compiler is used to analyze a static cache
hit. A weighted graph corresponding to interaction between pHy-
perOps can be constructed statically and the longest path identi�ed
to indicate execution time of a HyperOp in isolation. Further, loop
analysis needs to be performed to remove cycles induced by loops
in HyperOps. Loop scope[2] is a structural representation of loops
that represents overlap in loops and identi�es the appropriate loop
bound to be used in the analysis phase. �is information is used to
eliminate the back-edges i.e., loop edges in the weighted graph of
pHyperOps. �us, pHyperOps and their parent HyperOp’s bounds
can be easily computed with known WCET techniques, reducing
HyperOp analysis in a larger HIG to that of a HyperOp executing
in isolation, owing to the programming model. Local and remote
memory accesses come with di�erent latencies. Memory access
instructions within a HyperOp are annotated by the compiler to
indicate local and remote accesses whenever possible. When the
location of data cannot be determined, remote access is assumed
when computing WCET whereas BCET assumes an optimistic lo-
cal access. HyperOps are mapped onto the distributed hardware
platform by the compiler such that operands are communicated
through the NoC to other HyperOps through context frames. �e
other form of network tra�c originates from remote memory ac-
cesses and adds to dynamic memory and operand communication
latencies. We compute the BCET and WCET estimates for each
HyperOp before NoC analysis. Initially, we employ a naive BCET
computation methodology that assume all communication paths
to be disjoint and WCET that assumes full overlap in any form
of communication. We then employ an iterative algorithm that
improves WCET estimates by identifying con�icting BCET-WCET
intervals for HyperOps and updates WCET estimates.

3 RESULTS
LLVM based REDEFINE compiler forms the basis for WCET Ana-
lyzer tool. �e processormodel is created using processor itineraries.
We evaluate the e�cacy of our WCET tool on REDEFINE hardware
simulator of size 2 × 2. Matrix multiplication is performed with a
32 × 32 block size, with the overall matrix input and output size
being 128 × 128. Fibonacci is a divide and conquer algorithm run
for input size 15 without memoization. We observe that the bounds
generated by the WCET analyzer satis�es the safeness criterion
(�gures 2, 3). For a few kernels, tightness is lost due to false paths
and poor data locality. Figure 2 presents scalability of the proposed

WCET analyzer with increasing number of CEs. Square Root ex-
hibits very limited parallelism keeping its execution time constant.
In case of Matrix Multiplication, performing cache analysis per
iteration results in identi�cation of a large number of false cache
misses, whose e�ect accrue over iterations. �is leads to loss of
tightness and can be remedied by identifying steady cache states
by unrolling loops during the WCET analysis phase. In FFT(1K),
false path contributes to over estimation. Detection and removal of
false paths is beyond the scope of this paper. Figure 3 shows how
WCET estimation scales further as CRs are increased.

4 CONCLUSIONS
We present a time predictable massively parallel architecture called
REDEFINE built with two major design objectives namely, achiev-
ing performance by exploiting parallelism at various granularities
and WCET friendliness. WCET analyzer is integrated into the com-
pilation �ow to make use of the generated �ow facts. �e execution
model is data-race free, paving way for parallelism and o�ering
timing composability at a global level. Timing anomalies due to
shared network are circumvented through an iterative re�nement
of the initial bound estimates. �e compiler currently use WCET
analyzer for proving scheduleability.
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Figure 2: Bound Estimate for 1, 2 and 4 CE
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Figure 3: Bound Estimate for 1, 2 and 4 CR
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